\(\int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx\) [820]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F(-1)]
   Maxima [A] (verification not implemented)
   Giac [A] (verification not implemented)
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 29, antiderivative size = 101 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=\frac {17 a^4 x}{2}-\frac {4 a^4 \cos (c+d x)}{d}+\frac {4 a^4 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}-\frac {32 a^4 \cos (c+d x)}{3 d (1-\sin (c+d x))}-\frac {a^4 \cos (c+d x) \sin (c+d x)}{2 d} \]

[Out]

17/2*a^4*x-4*a^4*cos(d*x+c)/d+4/3*a^4*cos(d*x+c)/d/(1-sin(d*x+c))^2-32/3*a^4*cos(d*x+c)/d/(1-sin(d*x+c))-1/2*a
^4*cos(d*x+c)*sin(d*x+c)/d

Rubi [A] (verified)

Time = 0.13 (sec) , antiderivative size = 101, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.207, Rules used = {2951, 2729, 2727, 2718, 2715, 8} \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=-\frac {4 a^4 \cos (c+d x)}{d}-\frac {a^4 \sin (c+d x) \cos (c+d x)}{2 d}-\frac {32 a^4 \cos (c+d x)}{3 d (1-\sin (c+d x))}+\frac {4 a^4 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}+\frac {17 a^4 x}{2} \]

[In]

Int[Sec[c + d*x]^2*(a + a*Sin[c + d*x])^4*Tan[c + d*x]^2,x]

[Out]

(17*a^4*x)/2 - (4*a^4*Cos[c + d*x])/d + (4*a^4*Cos[c + d*x])/(3*d*(1 - Sin[c + d*x])^2) - (32*a^4*Cos[c + d*x]
)/(3*d*(1 - Sin[c + d*x])) - (a^4*Cos[c + d*x]*Sin[c + d*x])/(2*d)

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 2715

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*Cos[c + d*x]*((b*Sin[c + d*x])^(n - 1)/(d*n))
, x] + Dist[b^2*((n - 1)/n), Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integ
erQ[2*n]

Rule 2718

Int[sin[(c_.) + (d_.)*(x_)], x_Symbol] :> Simp[-Cos[c + d*x]/d, x] /; FreeQ[{c, d}, x]

Rule 2727

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(-1), x_Symbol] :> Simp[-Cos[c + d*x]/(d*(b + a*Sin[c + d*x])), x]
/; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 2729

Int[((a_) + (b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b*Cos[c + d*x]*((a + b*Sin[c + d*x])^n/(a*d
*(2*n + 1))), x] + Dist[(n + 1)/(a*(2*n + 1)), Int[(a + b*Sin[c + d*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d},
 x] && EqQ[a^2 - b^2, 0] && LtQ[n, -1] && IntegerQ[2*n]

Rule 2951

Int[cos[(e_.) + (f_.)*(x_)]^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(
m_), x_Symbol] :> Dist[1/a^p, Int[ExpandTrig[(d*sin[e + f*x])^n*(a - b*sin[e + f*x])^(p/2)*(a + b*sin[e + f*x]
)^(m + p/2), x], x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && IntegersQ[m, n, p/2] && ((GtQ[m,
0] && GtQ[p, 0] && LtQ[-m - p, n, -1]) || (GtQ[m, 2] && LtQ[p, 0] && GtQ[m + p/2, 0]))

Rubi steps \begin{align*} \text {integral}& = a^4 \int \left (8+\frac {4}{(-1+\sin (c+d x))^2}+\frac {12}{-1+\sin (c+d x)}+4 \sin (c+d x)+\sin ^2(c+d x)\right ) \, dx \\ & = 8 a^4 x+a^4 \int \sin ^2(c+d x) \, dx+\left (4 a^4\right ) \int \frac {1}{(-1+\sin (c+d x))^2} \, dx+\left (4 a^4\right ) \int \sin (c+d x) \, dx+\left (12 a^4\right ) \int \frac {1}{-1+\sin (c+d x)} \, dx \\ & = 8 a^4 x-\frac {4 a^4 \cos (c+d x)}{d}+\frac {4 a^4 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}-\frac {12 a^4 \cos (c+d x)}{d (1-\sin (c+d x))}-\frac {a^4 \cos (c+d x) \sin (c+d x)}{2 d}+\frac {1}{2} a^4 \int 1 \, dx-\frac {1}{3} \left (4 a^4\right ) \int \frac {1}{-1+\sin (c+d x)} \, dx \\ & = \frac {17 a^4 x}{2}-\frac {4 a^4 \cos (c+d x)}{d}+\frac {4 a^4 \cos (c+d x)}{3 d (1-\sin (c+d x))^2}-\frac {32 a^4 \cos (c+d x)}{3 d (1-\sin (c+d x))}-\frac {a^4 \cos (c+d x) \sin (c+d x)}{2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 7.32 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.56 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=-\frac {a^4 \left (-3 (161+204 c+204 d x) \cos \left (\frac {1}{2} (c+d x)\right )+(647+204 c+204 d x) \cos \left (\frac {3}{2} (c+d x)\right )-39 \cos \left (\frac {5}{2} (c+d x)\right )+3 \cos \left (\frac {7}{2} (c+d x)\right )+6 (146+136 c+136 d x+(-59+68 c+68 d x) \cos (c+d x)-14 \cos (2 (c+d x))-\cos (3 (c+d x))) \sin \left (\frac {1}{2} (c+d x)\right )\right )}{48 d \left (\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )^3} \]

[In]

Integrate[Sec[c + d*x]^2*(a + a*Sin[c + d*x])^4*Tan[c + d*x]^2,x]

[Out]

-1/48*(a^4*(-3*(161 + 204*c + 204*d*x)*Cos[(c + d*x)/2] + (647 + 204*c + 204*d*x)*Cos[(3*(c + d*x))/2] - 39*Co
s[(5*(c + d*x))/2] + 3*Cos[(7*(c + d*x))/2] + 6*(146 + 136*c + 136*d*x + (-59 + 68*c + 68*d*x)*Cos[c + d*x] -
14*Cos[2*(c + d*x)] - Cos[3*(c + d*x)])*Sin[(c + d*x)/2]))/(d*(Cos[(c + d*x)/2] - Sin[(c + d*x)/2])^3)

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 0.30 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.31

method result size
risch \(\frac {17 a^{4} x}{2}+\frac {i a^{4} {\mathrm e}^{2 i \left (d x +c \right )}}{8 d}-\frac {2 a^{4} {\mathrm e}^{i \left (d x +c \right )}}{d}-\frac {2 a^{4} {\mathrm e}^{-i \left (d x +c \right )}}{d}-\frac {i a^{4} {\mathrm e}^{-2 i \left (d x +c \right )}}{8 d}-\frac {8 \left (-15 i a^{4} {\mathrm e}^{i \left (d x +c \right )}+9 a^{4} {\mathrm e}^{2 i \left (d x +c \right )}-8 a^{4}\right )}{3 \left ({\mathrm e}^{i \left (d x +c \right )}-i\right )^{3} d}\) \(132\)
parallelrisch \(-\frac {a^{4} \left (-204 d x \sin \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )-204 d x \cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )-612 d x \sin \left (\frac {d x}{2}+\frac {c}{2}\right )+612 d x \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+3 \sin \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )+39 \sin \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )+575 \sin \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+39 \cos \left (\frac {5 d x}{2}+\frac {5 c}{2}\right )-3 \cos \left (\frac {7 d x}{2}+\frac {7 c}{2}\right )-207 \cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+267 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )-837 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{24 d \left (\sin \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )+3 \sin \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\cos \left (\frac {3 d x}{2}+\frac {3 c}{2}\right )\right )}\) \(193\)
derivativedivides \(\frac {a^{4} \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+4 a^{4} \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+6 a^{4} \left (\frac {\left (\tan ^{3}\left (d x +c \right )\right )}{3}-\tan \left (d x +c \right )+d x +c \right )+4 a^{4} \left (\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{3}\right )+\frac {a^{4} \left (\sin ^{3}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )^{3}}}{d}\) \(268\)
default \(\frac {a^{4} \left (\frac {\sin ^{7}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {4 \left (\sin ^{7}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )}-\frac {4 \left (\sin ^{5}\left (d x +c \right )+\frac {5 \left (\sin ^{3}\left (d x +c \right )\right )}{4}+\frac {15 \sin \left (d x +c \right )}{8}\right ) \cos \left (d x +c \right )}{3}+\frac {5 d x}{2}+\frac {5 c}{2}\right )+4 a^{4} \left (\frac {\sin ^{6}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{6}\left (d x +c \right )}{\cos \left (d x +c \right )}-\left (\frac {8}{3}+\sin ^{4}\left (d x +c \right )+\frac {4 \left (\sin ^{2}\left (d x +c \right )\right )}{3}\right ) \cos \left (d x +c \right )\right )+6 a^{4} \left (\frac {\left (\tan ^{3}\left (d x +c \right )\right )}{3}-\tan \left (d x +c \right )+d x +c \right )+4 a^{4} \left (\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )^{3}}-\frac {\sin ^{4}\left (d x +c \right )}{3 \cos \left (d x +c \right )}-\frac {\left (2+\sin ^{2}\left (d x +c \right )\right ) \cos \left (d x +c \right )}{3}\right )+\frac {a^{4} \left (\sin ^{3}\left (d x +c \right )\right )}{3 \cos \left (d x +c \right )^{3}}}{d}\) \(268\)
norman \(\frac {-\frac {17 a^{4} x}{2}+\frac {80 a^{4}}{3 d}+\frac {17 a^{4} \tan \left (\frac {d x}{2}+\frac {c}{2}\right )}{d}+\frac {26 a^{4} \left (\tan ^{3}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {307 a^{4} \left (\tan ^{5}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {188 a^{4} \left (\tan ^{7}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {307 a^{4} \left (\tan ^{9}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {26 a^{4} \left (\tan ^{11}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}+\frac {17 a^{4} \left (\tan ^{13}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {17 a^{4} x \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {51 a^{4} x \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {51 a^{4} x \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {51 a^{4} x \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {51 a^{4} x \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {17 a^{4} x \left (\tan ^{12}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}+\frac {17 a^{4} x \left (\tan ^{14}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{2}-\frac {16 a^{4} \left (\tan ^{10}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}-\frac {96 a^{4} \left (\tan ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{d}+\frac {80 a^{4} \left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {304 a^{4} \left (\tan ^{8}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}-\frac {544 a^{4} \left (\tan ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{3 d}}{\left (\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )-1\right )^{3} \left (1+\tan ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )^{4}}\) \(392\)

[In]

int(sec(d*x+c)^4*sin(d*x+c)^2*(a+a*sin(d*x+c))^4,x,method=_RETURNVERBOSE)

[Out]

17/2*a^4*x+1/8*I*a^4/d*exp(2*I*(d*x+c))-2*a^4/d*exp(I*(d*x+c))-2*a^4/d*exp(-I*(d*x+c))-1/8*I*a^4/d*exp(-2*I*(d
*x+c))-8/3*(-15*I*a^4*exp(I*(d*x+c))+9*a^4*exp(2*I*(d*x+c))-8*a^4)/(exp(I*(d*x+c))-I)^3/d

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 197 vs. \(2 (89) = 178\).

Time = 0.26 (sec) , antiderivative size = 197, normalized size of antiderivative = 1.95 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=\frac {3 \, a^{4} \cos \left (d x + c\right )^{4} - 18 \, a^{4} \cos \left (d x + c\right )^{3} - 102 \, a^{4} d x - 8 \, a^{4} + 17 \, {\left (3 \, a^{4} d x + 5 \, a^{4}\right )} \cos \left (d x + c\right )^{2} - {\left (51 \, a^{4} d x - 98 \, a^{4}\right )} \cos \left (d x + c\right ) - {\left (3 \, a^{4} \cos \left (d x + c\right )^{3} - 102 \, a^{4} d x + 21 \, a^{4} \cos \left (d x + c\right )^{2} + 8 \, a^{4} - {\left (51 \, a^{4} d x - 106 \, a^{4}\right )} \cos \left (d x + c\right )\right )} \sin \left (d x + c\right )}{6 \, {\left (d \cos \left (d x + c\right )^{2} - d \cos \left (d x + c\right ) + {\left (d \cos \left (d x + c\right ) + 2 \, d\right )} \sin \left (d x + c\right ) - 2 \, d\right )}} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^2*(a+a*sin(d*x+c))^4,x, algorithm="fricas")

[Out]

1/6*(3*a^4*cos(d*x + c)^4 - 18*a^4*cos(d*x + c)^3 - 102*a^4*d*x - 8*a^4 + 17*(3*a^4*d*x + 5*a^4)*cos(d*x + c)^
2 - (51*a^4*d*x - 98*a^4)*cos(d*x + c) - (3*a^4*cos(d*x + c)^3 - 102*a^4*d*x + 21*a^4*cos(d*x + c)^2 + 8*a^4 -
 (51*a^4*d*x - 106*a^4)*cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^2 - d*cos(d*x + c) + (d*cos(d*x + c) + 2*d
)*sin(d*x + c) - 2*d)

Sympy [F(-1)]

Timed out. \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=\text {Timed out} \]

[In]

integrate(sec(d*x+c)**4*sin(d*x+c)**2*(a+a*sin(d*x+c))**4,x)

[Out]

Timed out

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 158, normalized size of antiderivative = 1.56 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=\frac {2 \, a^{4} \tan \left (d x + c\right )^{3} + {\left (2 \, \tan \left (d x + c\right )^{3} + 15 \, d x + 15 \, c - \frac {3 \, \tan \left (d x + c\right )}{\tan \left (d x + c\right )^{2} + 1} - 12 \, \tan \left (d x + c\right )\right )} a^{4} + 12 \, {\left (\tan \left (d x + c\right )^{3} + 3 \, d x + 3 \, c - 3 \, \tan \left (d x + c\right )\right )} a^{4} - 8 \, a^{4} {\left (\frac {6 \, \cos \left (d x + c\right )^{2} - 1}{\cos \left (d x + c\right )^{3}} + 3 \, \cos \left (d x + c\right )\right )} - \frac {8 \, {\left (3 \, \cos \left (d x + c\right )^{2} - 1\right )} a^{4}}{\cos \left (d x + c\right )^{3}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^2*(a+a*sin(d*x+c))^4,x, algorithm="maxima")

[Out]

1/6*(2*a^4*tan(d*x + c)^3 + (2*tan(d*x + c)^3 + 15*d*x + 15*c - 3*tan(d*x + c)/(tan(d*x + c)^2 + 1) - 12*tan(d
*x + c))*a^4 + 12*(tan(d*x + c)^3 + 3*d*x + 3*c - 3*tan(d*x + c))*a^4 - 8*a^4*((6*cos(d*x + c)^2 - 1)/cos(d*x
+ c)^3 + 3*cos(d*x + c)) - 8*(3*cos(d*x + c)^2 - 1)*a^4/cos(d*x + c)^3)/d

Giac [A] (verification not implemented)

none

Time = 0.33 (sec) , antiderivative size = 135, normalized size of antiderivative = 1.34 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=\frac {51 \, {\left (d x + c\right )} a^{4} + \frac {6 \, {\left (a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{3} - 8 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 8 \, a^{4}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + 1\right )}^{2}} + \frac {16 \, {\left (6 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 15 \, a^{4} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 7 \, a^{4}\right )}}{{\left (\tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) - 1\right )}^{3}}}{6 \, d} \]

[In]

integrate(sec(d*x+c)^4*sin(d*x+c)^2*(a+a*sin(d*x+c))^4,x, algorithm="giac")

[Out]

1/6*(51*(d*x + c)*a^4 + 6*(a^4*tan(1/2*d*x + 1/2*c)^3 - 8*a^4*tan(1/2*d*x + 1/2*c)^2 - a^4*tan(1/2*d*x + 1/2*c
) - 8*a^4)/(tan(1/2*d*x + 1/2*c)^2 + 1)^2 + 16*(6*a^4*tan(1/2*d*x + 1/2*c)^2 - 15*a^4*tan(1/2*d*x + 1/2*c) + 7
*a^4)/(tan(1/2*d*x + 1/2*c) - 1)^3)/d

Mupad [B] (verification not implemented)

Time = 17.13 (sec) , antiderivative size = 287, normalized size of antiderivative = 2.84 \[ \int \sec ^2(c+d x) (a+a \sin (c+d x))^4 \tan ^2(c+d x) \, dx=\frac {17\,a^4\,x}{2}+\frac {\frac {17\,a^4\,\left (c+d\,x\right )}{2}-\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )\,\left (\frac {51\,a^4\,\left (c+d\,x\right )}{2}-\frac {a^4\,\left (153\,c+153\,d\,x-378\right )}{6}\right )-\frac {a^4\,\left (51\,c+51\,d\,x-160\right )}{6}+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^6\,\left (\frac {51\,a^4\,\left (c+d\,x\right )}{2}-\frac {a^4\,\left (153\,c+153\,d\,x-102\right )}{6}\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^5\,\left (\frac {85\,a^4\,\left (c+d\,x\right )}{2}-\frac {a^4\,\left (255\,c+255\,d\,x-306\right )}{6}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2\,\left (\frac {85\,a^4\,\left (c+d\,x\right )}{2}-\frac {a^4\,\left (255\,c+255\,d\,x-494\right )}{6}\right )+{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^4\,\left (\frac {119\,a^4\,\left (c+d\,x\right )}{2}-\frac {a^4\,\left (357\,c+357\,d\,x-460\right )}{6}\right )-{\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^3\,\left (\frac {119\,a^4\,\left (c+d\,x\right )}{2}-\frac {a^4\,\left (357\,c+357\,d\,x-660\right )}{6}\right )}{d\,{\left (\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )-1\right )}^3\,{\left ({\mathrm {tan}\left (\frac {c}{2}+\frac {d\,x}{2}\right )}^2+1\right )}^2} \]

[In]

int((sin(c + d*x)^2*(a + a*sin(c + d*x))^4)/cos(c + d*x)^4,x)

[Out]

(17*a^4*x)/2 + ((17*a^4*(c + d*x))/2 - tan(c/2 + (d*x)/2)*((51*a^4*(c + d*x))/2 - (a^4*(153*c + 153*d*x - 378)
)/6) - (a^4*(51*c + 51*d*x - 160))/6 + tan(c/2 + (d*x)/2)^6*((51*a^4*(c + d*x))/2 - (a^4*(153*c + 153*d*x - 10
2))/6) - tan(c/2 + (d*x)/2)^5*((85*a^4*(c + d*x))/2 - (a^4*(255*c + 255*d*x - 306))/6) + tan(c/2 + (d*x)/2)^2*
((85*a^4*(c + d*x))/2 - (a^4*(255*c + 255*d*x - 494))/6) + tan(c/2 + (d*x)/2)^4*((119*a^4*(c + d*x))/2 - (a^4*
(357*c + 357*d*x - 460))/6) - tan(c/2 + (d*x)/2)^3*((119*a^4*(c + d*x))/2 - (a^4*(357*c + 357*d*x - 660))/6))/
(d*(tan(c/2 + (d*x)/2) - 1)^3*(tan(c/2 + (d*x)/2)^2 + 1)^2)